
AIAA-2001-4119

EXAMINING REUSE IN LASRS++-BASED PROJECTS

Michael M. Madden*

NASA Langley Research Center

MS 125B

Hampton, VA 23681

Abstract

NASA Langley Research Center (LaRC) developed the

Langley Standard Real-Time Simulation in C++

(LaSRS++) to consolidate all software development for

its simulation facilities under one common framework.

A common framework promised a decrease in the total

development effort for a new simulation by encouraging

software reuse. To judge the success of LaSRS++ in

this regard, reuse metrics were extracted from 11 air-

craft models. Three methods that employ static analysis

of the code were used to identify the reusable compo- LOC

nents. For the method that provides the best estimate, NOC

reuse levels fall between 66% and 95% indicating a OC

high degree of reuse. Additional metrics provide in- RO

sight into the extent of the foundation that LaSRS++ Rsf

provides to new simulation projects.

When creating variants of an aircraft, LaRC developers The

use object-oriented design to manage the aircraft as a 1.

reusable resource. Variants modify the aircraft for a

research project or embody an alternate configuration of

the aircraft. The variants inherit from the aircraft

model. The variants use polymorphism to extend or

redefine aircraft behaviors to meet the research re-

quirements or to match the alternate configuration. Re-

use level metrics were extracted from 10 variants. Re-

use levels of aircraft by variants were 60% - 99%. 2.

* Senior Member, AIAA

Copyright © 2001 by the American Institute of Aero-

nautics and Astronautics, Inc. No copyright is asserted

in the United States under Title 17, U.S. Code. The

U.S. Government has a royalty free license to exercise

all rights under the copyright claimed herein for Gov-

ernment Purposes. All other rights are reserved by the

copyright owner.

AoR

DC

ERF

ERL

F

GUI

LaRC

LaSRS++

3.

Acronyms

Amount of Reuse Metric

Dependency Chain Method

External Reuse Frequency Metric

External Reuse Level Metric

Frequency

Graphical User Interface

Langley Research Center

Langley Standard Real-Time Simulation in

C++

Lines of Code

Number of Classes

Object Chain Method

Refined Object Chain Method

Size-Frequency Reuse Metric

Introduction

LaSRS++ project had three main goals:

Create one simulation framework from which de-

velopers could build both single-vehicle and multi-

vehicle simulations for a variety of aircraft. This

goal aimed to increase developer utilization. In the

1980's, each simulator at LaRC had its own code

base. With one common framework, developers no

longer had to undergo significant training to move

from one simulator to the next.

Move vehicle models between simulators with

minimal additional development. With separate

code bases, vehicle models had to be rewritten and

re-tested to move to another simulator.

Encourage software reuse. With separate code

bases leading to segregated development teams, re-

invention of features was not only common but

sometimes necessary. Designed as an object-

oriented framework, LaSRS++ provided a large

number of generic components that developers

could reuse when writing a new simulation. When

1

American Institute of Aeronautics and Astronautics

possible,newfeaturesaremadeintogenericcom-
ponentsandaddedtotheframeworkforthebenefit
offutuxeprojects.

Thefirsttwogoalsdefinedprojectsuccess.Whenthe
first two goalsweredemonstrated,LaRCadopted
LaSRS++as its standardsimulationframework.1'2
Softwarereusecouldnotbefactoredintotheadoption
decisionbecauseit couldnotbemeasureduntilseveral
successfulprojectswerecreatedusingLaSRS++.

Thisstudyexamines21aircraftsimulationprojectsthat
werebuiltusingLaSRS++.Theseprojectsfallintotwo
categories:standaloneaircraftmodels(11)orvariants
ofthestandaloneaircraft(10).Somevariantsrepresent
alternateconfigurationsof anaircraft;forexample,the
F18CismodeledasavariantoftheF18A.Othervari-
antsarecreatedto supportaspecificresearchproject.
Forexample,B757-WXAPisavariantoftheB757for
theWeatherandAccidentPrevention(WxAP)project.

To determinethesuccessof LaSRS++asa reusable
framework,thestandaloneaircraftmodels(a.k.a.base
aircraft)wereexamined.Staticanalysistechniques
wereappliedtothecodetoproducealistof LaSRS++
componentsthatthebaseaircraftreuse.Thislistwas
thenappliedtoseveralreusemetricstoprovideameas-
ureofreuseforeachaircraft.

AstheydowiththeLaSRS++framework,LaRCdevel-
opersemployobject-orienteddesigntomanagethebase
aircraftasareusableresourceforthevariants.Tojudge
thesuccessofemployingthisdesignchoice,reusemet-
ricsarealsoappliedtotheaircraftvariants.Thisanaly-
sisfocusesonthebaseaircraftasthepre-existingcode
baseandignoresLaSRS++code.

Categorizing Reuse

Before identifying reused code, its characteristics must

be defined. Computer Sciences Corporation (CSC) de-

fined four categories of reuse in their "standards and

practices" manual: 3

1. Transported. The code is reused as-is from a pre-

existing code base.

2. Adapted. The code is taken from a pre-existing

code base and less than 25% of it is modified.

3. Converted. The code is taken from a pre-existing

code base and 25%-50% of it is modified.

4. New. The code is written from scratch; or the

code is taken from a pre-existing code base and

more than 50% of it is modified.

Frakes and Terry combine the adapted and converted

categories together into a single "adaptive" category. 4

Bieman also uses a single category for adapted code but

calls it "leveraged. ''5 Both studies use the term "verba-

tim" in place of"transported. ''4'5 This paper will use the

simpler three category system and employ the terms:

"verbatim", "leveraged", and "new". Some studies also

give credit for reuse if a program uses new code more

than once. Frakes and Terry call this "internal" reuse. 4

(Reuse from a pre-existing code base is "external" re-

use.) Since this study attempts to measure the success

of LaSRS++ (and base aircraft) as a reusable frame-

work, internal reuse is ignored.

Under the LaSRS++ development process, developers

are not allowed to copy and modify LaSRS++ code to

produce a vehicle-only variant. If a vehicle requires

data and/or behavior modifications to a LaSRS++ class,

the developer must use inheritance and polymorphism

to make the changes] In other words, the vehicle-only

specialization must inherit from the LaSRS++ class.

Since no reused LaSRS++ code is modified, all

LaSRS++ reuse would be transported (a.k.a. verbatim)

under CSC's definitions. However, Bieman views in-

heritance and polymorphism as language-supported

mechanisms for modifying reused code. 5 Thus, Bieman

categorizes inheritance as "leveraged" reuse. This pa-

per will apply Bieman's definition from the perspective

of the new code only. When a new class inherits from a

LaSRS++ class, then the reuse is categorized as "lever-

aged". All ancestors of the LaSRS++ parent are also

counted as "leveraged" reuse. All other reuse is verba-

tim. Thus, if new code exercises verbatim reuse of a

LaSRS++ class, then all ancestors of the LaSRS++ class

are also counted as verbatim reuse.

The same rules also apply to variants of base aircraft.

The developer is not allowed to copy and modify the

base aircraft code. The developer must use inheritance

-t-Inheritance groups classes, which share common at-

tributes and behaviors, into hierarchies. Polymorphism

allows a derived class to redefine the behavior of a base

class interface. 6

2

American Institute of Aeronautics and Astronautics

andpolymorphismtoaddthevariant'suniquedataand
behaviorsto baseaircraftclasses.Inheritingfromthe
baseaircraftconstitutesleveragedreuseof thebase
aircraft.All otherreuseofthebaseaircraftisverbatim.

Methods

Identifying the Reused Components

The first step in measuring reuse of LaSRS++-based

projects is to identify the reused LaSRS++ components.

Getting an accurate list of reused components is prob-

lematic. The only accurate means is to instrument the

code for call chain analysis and to create a set of rums

that provide 100% code coverage of the vehicle source

files and exercises all paths in the LaSRS++ code rele-

vant to the vehicle. For software with the complexity of

LaSRS++-based simulations, developing a complete set

of runs is very time consuming and nearly impossible.

A static analysis of the source is a more economical

means of obtaining data. But static analysis provides, at

best, an estimate of the reused components. For this

study, two static analysis methods were selected to pro-

vide a lower and upper bound of reused components. A

method provides an upper bound if it selects all compo-

nents reused by the project and may possibly falsely

identify extra components. A method provides a lower

bound if it does not falsely select any components but,

in the process, may overlook some reused components.

The dependency chain (DC) and the object chain (OC)

were selected to provide these bounds. The dependency

chain identifies all of the source files that are required

to build a simulation containing the aircraft model. It

provides the upper bound. The object chain method

statically analyzes the code for the creation of objects.

It counts only the classes and ancestor classes of identi-

fied objects. This method provides a lower bound when

it ignores objects created within conditional statements

in LaSRS++ code.*

The dependency chain was obtained from ClearCase TM,

the configuration management tool used for LaSRS++.

When used for build management, ClearCase records

the source files that the compiler reads when it creates

the executable. The DC method falsely adds some

* "if-else" or "switch" statements.

classes because some LaSRS++ components are condi-

tionally created based on checks of the vehicle's con-

tents. For example, the file dependency list for the

B757 includes all LaSRS++ components related to

weapons because the LaSRS++ graphical user interface

(GUI) conditionally creates a weapon system dialog if

the vehicle has a weapon system. The DC method iden-

tifies all reused files and may falsely identify some files

as reused. Thus, reuse measures derived from the DC

method represent an upper bound.

In the OC method, the source files are statically ana-

lyzed to produce a list of created objects. A perl script

was created to extract the object list from the source

files. First, the vehicle-only files are examined for the

list of LaSRS++ objects that they create. LaSRS++

files related to the object list are then analyzed for a list

of objects that they will unconditionally create. The last

step is repeated until the object chain is exhausted. It is

the conditional creation of objects in LaSRS++ files that

creates false identifications in the DC method. The OC

method ignores object creation within conditional

statements in LaSRS++ code so that it will not falsely

identify classes as reused. But, this may also cause the

method to miss valid, reused classes.

The OC method counts an object (i.e. a class instance)

if any of the following conditions are encountered:

1. An object (but not a pointer or reference) of the

class is declared.

2. An object of the class is allocated using the opera-

tor new.

3. The class is a superclass of a previously instanced

class.

4. A method of a previously instanced class returns an

object of the class by value. §

5. A scope-qualified invocation of a class member is

made and no other instance of the class is identi-

fied. This condition identifies class utilities, which

contain only static members. The program creates a

single global instance of the class utility. Thus, all

invocations for a class utility are attributed to a sin-

gle global object.

§ This was a welcome side effect of the search pattern

for object declarations.

3

American Institute of Aeronautics and Astronautics

TheOCmethodfindsmost,butnotallclassesthatthe
simulationwill instance.It will failto identifyclasses
instancedonlyunderthefollowingconditions:
1. A templateinstancesoneof its typearguments.

LaSRS++hassomeclassesthatareinstancedonly
bytemplates.

2. LaSRS++codecreatestheobjectwithinacondi-
tionalstatement.Asstatedabove,thisisbydesign.

3. A methodofapreviouslyinstancedclassusespass-
by-valueforanargumentoftheclasstype.Thisis
rareinLaSRS++projects.Itsraritydidnotjustify
theefforttomakeareliablesearchforit.

TheOCmethodwill not identifyclasses,whichthe
projectdoesnotuse;butit mayoverlookclassesthat
theprojectdoesuse.Thus,it servesasagoodlower
boundforreusemeasures.

Thetruemeasureofreusewill liebetweenvaluescom-
putedfromtheOCandDC methods.Theresultsin
Table1 showthatthereisa largerangebetweenthe
twotechniques.Inallcases,theOCmethodselectsless
thanhalf of theLaSRS++filesselectedby theDC
method.To obtaina betterideaof wherethetrue
measuremayfall in thisrange,a thirdresultiscom-
putedbyrefiningtheresultsfortheOCmethod.

TheOClistofreusedfilesisrefinedbyinspectingthe
differencebetweenthereusedclasslistsfromtheOC
andDCmethods.Thedifferencelistsfor all aircraft
sharea commonsetof 861files. Thirty-sixpercent
(309files)areprimitiveclassesthatarenotspecificto
thedomainof simulationatLaRC.Theseclassesare
usedto buildthe domain-specificmathmodels(32
files),systeminterfaces(66 files),or GUI elements
(209files). Theremainingdomainspecificfilesare
brokendownasfollows:mathmodels(146),system
interfaces(122),andGUIelements(286).Intotal,57%
of therejectedfilesareGUIcomponents.Thisisnot
surprisingsincemanyGUIelementsareconditionally
createdin responseto userinputs.Theremainderis
nearlysplitevenlybetweenmathmodels(21%)and
systeminterfaces(22%).An inspectionof thesefiles
revealsahostofcomponentsthatareconditionallybuilt
basedonru.ntimeoptionsandcockpitselection.Over-
all,aminorityofthecommonlyrejectedfilesiscondi-
tionallybuiltbasedon thepresenceof selectcompo-
nentsinthevehicle.

Therefore,all aircraftmodelsreusemostof thecom-
monlyrejectedfiles.Addingthemtotheobjectchain's
listwill resultinalistthatprovidesabetterestimateof
reuse.Thisrefinementmethodiscalledtherefinedob-
jectchain(RO)method.Therefinednumberrepresents
neitheranewupperboundnoranewlowerbound.A
combinationof theobjectchainlist andthecommon
rejectedfilelistmaycontainfilesthataprojectdoesnot
usein additionto possiblyoverlookingfilesthatthe
projectdoesuse. However,metricsderivedfromthe
refinedlistaremorelikelytobeintheneighborhoodof
thetruevaluethanmetricsderivedfromeitherthede-
pendencychainorobjectchainlists.

Selecting the Metrics

This study was focused on answering one basic ques-

tion. Does LaSRS++ succeed as a reusable framework?

This question governed the selection of the metrics.

Metrics that measure the amount of LaSRS++ reuse in a

simulation are pertinent to the question. A survey of

general reuse metrics is found in papers by Devenbu (et.

al.) and by Frakes and Terry. 4'7 Of the currently pro-

posed metrics, the "amount of reuse" (AoR) metric, the

External Reuse Level (ERL), the External Reuse Fre-

quency (ERF), and the "size-frequency reuse" (Rsf) met-

ric most directly address the question. Bieman also

proposes a set of reuse metrics specifically for object-

oriented code. 5 But, these metrics provide insight into

the nature of the reuse rather than the amount. Al-

though Bieman's metrics are of interest, they do not

directly answer the question. Future work may include

Bieman's metrics.

The AoR metric is the simplest and most widely used.

It is the ratio of lines of code (LOC) reused from

LaSRS++ to the total LOC of the simulation:

AoR = LOC framew°rk
LOCtotal

For this metric, LOC was measured as non-comment,

non-blank source lines. However, the exact technique

used to count LOC is not important when: 7'8'9

a. The body of code being analyzed is written ac-

cording to a published style guide, or the body of

code is written within the same subject domain.

b. The body of code is written in the same language.

c. The metric uses the ratio of LOC counts.

4

American Institute of Aeronautics and Astronautics

Table 1 Reuse Metrics of Base Aircraft Projects ¶

Aircraft

Name

B757

File Count

Model LaSRS++

309

F18E 367

F18E-

RPV

190

F18A 175

F16C 97

HL-20 75

F16XL 84

F16A 88

F15A 89

1882 PC

913 oc

1774 RO

1805 DC

702 OC

1563 RO

1813 DC

696 OC

1557 RO

1795 DC

730 OC

1591RO

1713 DC

660 OC

1521 RO

1700 DC

7210C

1582 RO

1693 DC

610 OC

1471 RO

1711 DC

630 OC

1491 RO

1707 DC

650 oc

1511 RO

Generic 76 1701 DC

Fighter 648 oc

1509 RO

General 56 1698 DC

Aviation 699 oc

1560 RO

All three criteria apply to

AoR metric.

LOC Class Count

Mode_ LaSRS++

102486 228082 DC

(1659) 116834 oc

216801RO

98127 215983DC

(435003) 93421 oc

193388 RO

45193 216160 DC

(12812) 92322 OC

192289 RO

32434 213780DC

(9658) 93559 OC

193526 RO

19895 212794DC

(27805) 92058 OC

192025 RO

16266 208841DC

(2055) 97820 OC

197787 RO

11210 208632DC

(2372) 84130 OC

184097 RO

10800 214386DC

(2325) 90303 OC

190270 RO

10074 210427 DC

(2760) 90265 OC

190232 RO

7954 209842DC

(821) 89434 OC

189401RO

7015 208760DC

(0) 94795 oc

194762 RO

LaSRS++-based code and the

¶ DC = Dependency Chain. OC = Object Chain. RC =

Refined Object Chain.

Number in parenthesis is the LOC of auto-generated

code that contains table data. This code was excluded

from the LOC count of the model.

Model

131

165

90

81

45

36

38

41

42

34

28

AoR

LaSRS++

889 DC 69%DC

403 OC 53%OC

835 RO 68%RO

851DC 69%DC

298 OC 49%OC

730 RO 66%RO

854 DC 83%DC

294 OC 67%OC

726 RO 81%RO

848 DC 87%DC

314 OC 74%OC

746 RO 86%RO

808 DC 91%DC

280 OC 82%OC

712 RO 91%RO

802 DC 93%DC

3110C 86%OC

743 RO 92%RO

798 DC 95%DC

255 OC 88%OC

687 RO 94%RO

805 DC 95%DC

263 OC 89%OC

695 RO 95%RO

803 DC 95%DC

273 OC 90%OC

705 RO 95%RO

802 DC 96%DC

274 OC 92%OC

706 RO 96%RO

801DC 97%DC

300 OC 93%OC

732 RO 96%RO

ERL ERF Rsf

(OC) (OC)

.87 DC .94 .91

.76 OC

.86 RO

.84 DC .94 .89

.64 OC

.82 RO

.91 DC .96 .90

.77 OC

.89 RO

.91 DC .95 .95

.80 OC

.90 RO

.95 DC .98 .97

.86 oc

.94 RO

.96 DC .99 .98

.90 OC

.95 RO

.96 DC .98 .98

.87 oc

.95 RO

.95 DC .98 .98

.87 oc

.94 RO

.95 DC .98 .98

.87 OC

.94 RO

.96 DC .98 .99

.89 OC

.95 RO

.97 DC .99 .99

.92 oc

.96 RO

Some auto-generated code was excluded from the LOC

count. Many projects use look-up tables. LaSRS++

supplies a utility that generates code from the raw table

data. The utility supplies two options for loading the

data: read from file or coded static arrays. Many proj-

ects load some or all of their table data via code because

it provides faster startup time. This code was excluded

from LOC counts used in metrics. For completeness,

5

American Institute of Aeronautics and Astronautics

Table 1 does provide the LOC for the table data in each

vehicle. The total LOC of table data in the entire

LaSRS++ framework is 2044 and is also excluded. The

utility also auto-generates the proper object declarations

and look-up code. However, this auto-generated code is

sometimes mixed with hand-written code. Thus, it is

included in the LOC count. Since vehicle code uses far

more table lookups than LaSRS++ components, in-

cluding this code tends to depress the AoR metrics.

Frakes and Terry proposed the ERL metric. 4 This met-

ric views the system as an aggregation of parts with

different levels of abstraction. Classes, functions, and

source files are different ways of decomposing the sys-

tem. ERL recognizes that developers do not typically

reuse individual lines of code but higher level abstrac-

tions. In LaSRS++-based projects, developers almost

exclusively work with classes as the basic unit of reuse.

Thus, the class was the level of abstraction chosen. In

this context, the metric is the ratio of the number of

classes (NOC) from LaSRS++ to the total NOC.

ERL = NOC framew°rk

NOCtotal

The strength of the AoR metric is that it accounts for

component size. The ERL metric does not. Since size

and cost are closely related, AoR better correlates with

cost savings than ERL. 7 But, ERL provides better in-

sight into how much of the system's decomposition into

components is covered by reused components. It can

act as an indicator of how well developers were able to

identify and incorporate building blocks from the

framework into a new program.

A common criticism of the AoR and ERL metrics is that

they give credit only once for reuse of a component]

However, Poulin defends the single-use credit. Since

programmers should be expected to build a system from

a decomposition of functions rather than as a stream of

consciousness, the cost of implementing a component is

saved only once. 1° Still, metrics that account for the

frequency of reused code, provide insight into the depth

of infrastructure offered by the framework. A system

that relies greatly on reused code for much of its activity

cost less to design and test than a system that relies

mostly on new code.

Both the ERL and AoR metrics have frequency coun-

terparts: the External Reuse Frequency (ERF) and the

Size-Frequency Reuse (R_f).4'5 The frequency (F) of a

reused item is the number of times that item is invoked

in the code. For classes, it is the number of objects of

the class that the program creates. ERF is the sum of

the frequency of the reused classes divided by the sum

of the frequency of all classes (i.e. new and reused):

_'_N framework
ERF = A.,i=l Fi

Z t°tal F.
i=l t

ERF can act as an indicator of reduced design time

since it measures how much the system relies on pre-

existing classes (i.e. designs) for its behavior. It can

also act as an indicator of reduced maintenance. Com-

ponents with a high frequency of use have been adapted

to and tested in more situations. Thus, they tend to be

more adaptable to future changes and more robust than

components with a low frequency of use. Rsf is similar

to ERF except the frequency of each class is multiplied

by its LOC count during the summation:

zNf ramew°rk (F i * LOCi)i=l

Rsf = _ "Nt°tal (F. * LOC i)
A.._i=l _ t

Rsf Call act as an indicator of reduced testing time since

it measures how much of the total program logic** con-

sists of pre-existing (and pre-tested) code.

As with the other metrics, the static analysis cannot

provide the true value of ERF or R_f. But the OC

method can provide a lower bound. While the OC

analysis processes source files for object creation, it can

track the number of instances it encounters for a class.

The OC method has two limitations, it captures only a

subset of the reused classes and it undercounts their

frequency. The manner in which the OC method identi-

fies objects guarantees an undercount of LaSRS++ ob-

jects. For example, the OC method counts only one

object when an array of objects is declared or allocated.

When the OC method counts a derived class instance, it

**Program logic is defined to be the stream of code that

would result if all calls to class methods and functions

were replaced with the method/fimction code.

6

American Institute of Aeronautics and Astronautics

doesnotalsocountaninstanceof theancestors.Un-
dercountingis not a problemfor the vehicle-only
classes.Sincetheamountofvehicle-onlycodeismuch
smaller,instancecountscanbeverifiedusinginspec-
tion.SincetheDCmethoddoesnotidentifyobjects,it
cannotbeusedto computeanupperbound.Thus,the
maximumpossiblevalueisbelowoneforERFandRsf.

Base Aircraft Metrics

Eleven base aircraft were analyzed. These aircraft

cover a wide range of configurations: transports (B757),

fighters (F18E, F18E-RPV, F18A, F16C, F16XL,

F16A, F15A, and Generic Fighter), advanced concept

vehicles (HL-20TT), and general aviation. Table 1

shows the reuse level metrics derived for these aircraft

using the three analysis methods: dependency chain

(DC), object chain (OC), and refined object chain

(RO). ** The ranges of AoR are 49%- 93% OC, 66% -

96% RO, and 69%- 97% DC. The ranges of ERL are

0.64 - 0.92 OC, 0.82 - 0.96 RO, and 0.84 - 0.97 DC.

Only the AoR results for B757 and F18E under the OC

method show less than a two-thirds reuse level. As

stated earlier, the OC greatly undercounts the number of

reused classes. If these results were excluded, then all

base aircraft demonstrate a greater than two-thirds level

of reuse of LaSRS++. LaSRS++ provides a source

code repository from which a simulation takes the ma-

jority of its code.

As stated earlier, the author has greater confidence in

the RO numbers than the OC or DC numbers. The re-

sults for the RO and DC methods are very close, within

less than 2% for all aircraft. The DC method is a much

simpler analysis than the OC or RO methods. Thus, for

future LaSRS++-based vehicles, the DC method can

quickly provide an estimate of reuse level that is fairly

good though over-inflated.

The level of reuse provides part of the evidence that

simulations use LaSRS++ as a framework. It shows that

components designed as reusable are being reused. But

it does not demonstrate whether LaSRS++ provides a

-T--T-A high lifting body evaluated for space crew trans-

portation.

_ LaSRS++ is a multi-vehicle capable framework. Met-

rics were computed for a simulation with one vehicle.

foundation for building simulations; i.e., it provides a

core set of components that are relevant to all aircraft

simulations at LaRC. The file lists were examined for

the quantity of files that were common to all aircraft.

For each reuse identification method, Table 2 shows a

list of the LaSRS++ files reused by all base aircraft.

For each of the file attributes (number, classes, and

LOC), Table 3 shows the percentage ranges of the

common reused files to the total reused files and to the

total files (reused and new).

Table 2 Files Common to All Base Aircraft

Analysis Method Files

Object Chain 542

Refmed Object Chain 1403

Dependency Chain 1673

CommonOC Rejects I 861 I

Classes LOC

225 77691

657 177658

792 206954

432 99967

Table 3 Common Component Percentage Ranges

Analysis Common/TotN Reused

Method Files Classes LOC

OC 59 - 89% 56 - 88% 66 - 92%

RO 79 - 95% 79 - 96% 82 - 97%

DC 89 - 99% 89 - 99% 91 - 99%

Analysis Common/TotN (Reused +New)

Method Files Classes LOC

OC 44 - 78% 42 - 77% 35 - 81%

RO 67 - 90% 68 - 91% 56 - 91%

DC 76 - 94% 78 - 95% 63 - 94%

There is a wide range of results between the identifica-

tion methods with the RO and DC methods being clos-

est in agreement. The OC method shows that the com-

mon components make up at least two-thirds and as

much as 90% of the reused code. The RO method indi-

cates that the common components likely make up more

than 80% of the reused code. Percentages for the DC

method are even higher. As a percentage of total pro-

gram size, the OC method shows that LaSRS++ pro-

vides the developer with a minimum one-third of their

simulation at the start. The RO and DC methods, indi-

cate that LaSRS++ likely provides the developer with at

least half of the simulation up front and may provide as

much as 90% of the simulation. The length of the

common file set reflects the wide range of features that

LaSRS++ provides to simulations: real-time scheduling,

American Institute of Aeronautics and Astronautics

equationsof motion,environmentmodeling,hardware
interfaces,GUI,etc. Astheproportionof thesecom-
mon files to the total simulationdemonstrates,
LaSRS++isaframeworkthatgivesdevelopersahead
startonproducingsimulationsforLaRC'sfacilities.

ThestudyusesERFandRsftoquantifyhowmuchofa
simulation'slogicalstructureis builtuponLaSRS++.
Table1 showstheresults,asestimatedfromtheOC
method.Theresultsarethelowerboundforthetrue
value.TheERFshowsthatasimulationinstancesmore
than94%of itsobjectsfromLaSRS++classes.Onlya
smallportionof objectsis instancedfromnewcode.
Theresultimpliesthatdesigncyclesshouldbeshort,
involvingonlya smallnumberof objects.Experience
showsthatdesignof LaSRS++-basedsimulationscon-
centratesontheuniqueaspectsof thevehiclemodel.
LaSRS++handlesall otherconcernssuchasschedul-
ing,equationsof motion,environmentmodeling,GUI,
andhardwarecommunication.Evenwhenotheraspects
of thesimulationneedtailoringfor a simulation,the
designusuallyinvolvesa simplederivationfroman
existingclasshierarchy.

TheR_fshowsthatgreaterthan89%of thetotalpro-
gramlogiclieswithinLaSRS++code.TheLaSRS++
codehasalreadyundergoneextensivetesting.Thus,the
developercanassumethatLaSRS++codehasa low
defectcount.§§ Simulationtestingcanconcentrateon
thenewcode,whichmakesupnomorethan11%ofthe
totalsystembehavior.Aswithdesign,simulationtest-
ingtendsto focusontheuniqueaspectsof thevehicle
model.Themajorityof errorsthatoccurduringtesting
shouldoriginatefromnewcode.Thedevelopercan
productivelyidentifydefectsbyfirstconcentratingon
thenewcodeandignoringLaSRS++code.

ThehighERFandR_fvaluesreflectthestructureof
LaSRS++simulations.Thevehicle-onlycode(i.e.new
code)is a smallextensionof a largeexistinginfra-
structure.Newcodetendsto bean aggregationof
LaSRS++componentsthatinheritsfroma LaSRS++
classhierarchy.Sincenewclassesspecializeatmodel-
ingaspectsofavehicle,asimulationtypicallyinstances

§§Softwarewith the complexityof the LaSRS++
frameworkisrarelydefect-free.

a newclassonlyonce.¶¶ As computedby theOC
method,theaveragenumberof instancespernewclass
rangesfrom1.1(GeneralAviation)to2.7(B757).Only
theF18A,F18E,andB757haveanaverageof greater
thantwo(2.3,2.3,and2.7respectively).Thenext
highestaverageis 1.5fortheF18E-RPV.Ontheother
hand,theaveragenumberof instancesperLaSRS++
classrangesfrom 8.5 (GeneralAviation)to 19.0
(F18E).ThehighERFandR_fvaluesresultfroma
higheraveragefrequencyof useforLaSRS++classes
thanfornewclasses.LaSRS++classesaremoreoften
usedthannewclassesasbuildingblocksforthesimula-
tion. The ERFand R_fmetricscorroboratethat
LaSRS++providesa largestructuralfoundationfor
simulations,notjustacoderepository.

VehiclemodelscanreuseLaSRS++in oneof two
forms:leveraged(viainheritance)andverbatim.Since
it examinesthecodeforinheritanceandobjectcreation,
onlytheOCmethodwascapableofprovidinganesti-
matedcategorizationofLaSRS++reusebythevehicles.
Of thereusedLaSRS++classes,thevehiclesreuse6 -
11%throughleverage(i.e.inheritance).Thevehicles
reuse93- 96%verbatim.Thetworangesdonotcom-
bineto 100%becausesomeclassesarereusedboth
verbatimandthroughleverage.Verbatimreuseis
clearlythepredominantformof reuseforvehiclemod-
els.Thelargepercentageofverbatimreusereinforces
thedepictionofvehiclemodelsasasmallextensiontoa
largeunderlyinginfrastructure.

Aircraft Variant Metrics

A wide variety of research projects may use the base

aircraft to conduct experiments. Research projects have

four requirements for working with the base aircraft:

1. Research projects must be able to modify any as-

pect of the aircraft for the experiment.

2. Research projects must be isolated from each other.

Changes from one project cannot unintentionally

affect the results of another project.

3. Elevating project enhancements to the base aircraft

should be simple.

4. Research projects must have access to the latest

changes made to the base aircraft.

¶¶per aircraft instance.

8

American Institute of Aeronautics and Astronautics

/\

Figure 1 Design of Aircraft Variants

Research variants of an aircraft adhere to these re-

quirements by relying on inheritance to manage the air-

craft as a reusable resource. Figure 1 illustrates the

standard design for variants. Each variant inherits from

the base aircraft. All specialization is done within the

derived class. Polymorphism is used to redefine any

behaviors inherited from the base aircraft. Inheritance

allows projects to modify the base aircraft while main-

taining project isolation. If an update is made to the

base aircraft, all variants immediately inherit it. Be-

cause modifications by the variant are made within the

base aircraft structure that it inherits, elevating the

changes into the base aircraft is usually straightforward.

The same design is also used to create alternate configu-

rations of the aircraft. For example, the F 18TV is thrust

vectoring variant of the F 18A.

Reuse level metrics were collected for ten aircraft vari-

ants. Of the variants, only the last two (F18C and

F18TV) are configuration variants; the other eight are

research variants. The metrics focus on the reuse of the

base aircraft by the variant; the metrics ignore

LaSRS++ code. Unlike LaSRS++, the base aircraft is

not a generic framework. All classes

in the base aircraft are relevant to

each instance of the vehicle. Thus, Name

the DC method provides accurate file B757-ANOPP

lists for vehicle code and was the B757-CTAS

only identification method used. B757-RIPS

Reuse level metrics measure how

well the design of variants promotes B757-WXAP

reuse of the base aircraft. The results F16A-FL

are shown in Table 4. The AoR val- F18E-AWS

ues range from 60% to 99% with all F18A-SRA

but the F18C at 70% or greater. The F18C

ERL values range from .61 to .94. F18TV

The research variants tend to introduce small modifica-

tions to the base aircraft. The AoR for the research

variants is 73% or greater with all but the F16A-FL at

90% or greater. The configuration variants introduce a

larger body of modifications. Configuration variants

usually introduce major changes to the aerodynamic

model, engine model, control surface models, and/or

control law. The AoR for the two configuration vari-

ants is 60% (F18C) and 70% (F18TV). Overall, the

variants rely on the base aircraft for the majority of its

code.

Although variants are derived from the base aircraft, the

variants do not necessarily reuse a significant portion of

the base aircraft through leverage. The design of vari-

ants only requires leveraged reuse of one base aircraft

class, the class representing the vehicle. For example,

the only requirement for the B757-ANOPP vehicle is

that the B757Anopp class derives from the B757Base

class. The percentage of the base aircraft classes reused

through leverage varies greatly from 1.5% to 39%. The

variants can be divided into two groups, one that has

very a low percentage of leveraged reuse (<5%) and

one that has a moderate percentage of reuse (>5%).

A very low percentage of leveraged reuse indicates that

the variant primarily extends the base aircraft. In other

words, the majority of the variant's code adds new fea-

tures to the base aircraft and very little of the base air-

craft behavior is redefined. All of the variants in this

category are research variants. A moderate percentage

of leveraged reuse signifies that the variant redefines

behavior in one or more systems of the base aircraft. A

mixture of research and configuration variants falls into

Table 4 Reuse Metrics of Aircraft Variants

B757-VISTAS

Parent Classes LOC AoR ERL Leveraged

B-757 9 1927 98% .94 1.5%

B-757 10 1358 99% .93 3.0%

B-757 9 533 99% .94 1.5%

B-757 12 6973 94% .92 3.0%

B-757 33 10070 91% .80 3.0%

F16A 22 4016 73% .65 39.0%

F18E 17 2267 98% .91 7.9%

F18A 21 3611 90% .79 18.5%

F18A 51 21813 60% .61 9.9%

F18A 41 14089 70% .66 27.2%

9

American Institute of Aeronautics and Astronautics

thiscategory.Whilemaintainingbeneficiallevelsof
reuse,thedesignof variantsaccommodatesbothvari-
antsthatprimarilyaddbehaviorto baseaircraftand
variantsthatmoderatelyredefinebaseaircraftbehavior.

Conclusions

To study the effectiveness of LaSRS++ as a reusable

framework, this study computed reuse metrics for

eleven vehicle models produced using LaSRS++. Three

static code analysis methods were used to identify the

reused LaSRS++ components: object chain (OC), re-

fined object chain (RO), and dependency chain (DC).

The OC and DC methods provide a lower and upper

bound for the estimated reuse metrics respectively. But,

the OC method severely undercounts the reused files.

The RO method, which attempts to account for files the

OC method overlooks, was considered by the author to

be the best estimator of reused components. Since the

DC results are close to the RO results, the DC method,

which is the easiest to compute, can provide a good,

quick estimate of reuse for future LaSRS++ vehicles.

Reuse level and reuse frequency metrics were measured

at the LOC and class level. The reuse level metrics

show that LaSRS++ succeeds as a repository of reus-

able components. According to the RO results,

LaSRS++ makes up more than two-thirds of the total

LOC and more than 82% of the total classes. Further-

more, the component lists revealed a core set of

LaSRS++ components that are common across all air-

craft. This core set makes up at least 80% of the reused

components and at least 56% of the total program size.

Thus, LaSRS++ provides a code foundation for build-

ing simulations at LaRC. The reuse frequency metrics

demonstrate that this foundation extends beyond pro-

gram size. LaSRS++ provides a solid structural foun-

dation. The majority of a simulation's logical structure

comes from LaSRS++. More than 94% of all objects in

a simulation are created from LaSRS++ classes. Thus,

design cycles involve the definition of less than 6% of a

simulation's objects. More than 89% of the program

logic resides within LaSRS++ code. Testing can con-

centrate on as little as 11% of the program logic. Of the

classes that a vehicle reuses, more than 93% are reused

verbatim and less than 11% are leveraged through in-

heritance. These percentages corroborate that aircraft

models are a small extension to a larger infrastructure

supplied by LaSRS++.

When creating variants of a base aircraft, LaRC devel-

opers use object-oriented design to manage the base

aircraft as a reusable resource. Variants inherit from the

base aircraft. Reuse level metrics were extracted from

ten existing variants. The metrics show that 60% - 99%

of a variant is composed of base aircraft code. The

amount of leveraged reuse among variants demonstrates

that the variant design works equally well for variants

that simply add new behaviors and for variants that re-

define base aircraft behaviors. The variant design suc-

cessfully enables the tailoring of existing aircraft mod-

els.

Biblio_raohv

1 R. Leslie, D. Geyer, K. Cunningham, M. Madden, P.

Kenney, and P. Glaab. LaSRS++: An Object-Oriented

Framework for Real-Time Simulation of Aircraft.

AIAA-98-4529, Modeling and Simulation Technology

Conference, Boston, MA, August 1998.

2 p. Kenney, et. al. Using Abstraction to Isolate Hard-

ware in an Object-Oriented Simulation. AIAA Model-

ing & Simulation Technologies Conference, Boston,

August 1998, AIAA-98-4533.

3 R. Leach. Methods of Measuring Software Reuse for

the Prediction of Maintenance EfJort. Software Main-

tenance: Research and Practice, Vol 8, p 309-320,

1996.

4 W. Frakes and C. Terry. Software Reuse and Reus-

ability Metrics and Models. Technical Report, TR-95-

07, Virginia Polytechnic Institute and State University,

1995.

s j. Bieman. Deriving Measures of Software Reuse in

Object Oriented Systems. Technical Report, CS-91-112,

Colorado State University, 1991.

6 G. Booch. Object-Oriented Analysis and Design with

Applications. Benjamin/Cummings Publishing Com-

pany, Inc. NewYork, 1994. ISBN 0-8053-5340-2.

7 p. Devanbu, S. Karstu, W. Melo, and W. Thomas.

Analytical and Empirical Evaluation of Software Reuse

Metrics. Proceedings of the 18th International Confer-

10

American Institute of Aeronautics and Astronautics

enceonSoftwareEngineering,Berlin,Germany,p 189-
199,1996.

sj. Rossenberg.Some Misconceptions About Lines of

Code. Proceedings of the Fourth International Software

Metrics Symposium, Albuquerque, NM, p 137-142,

1997.

9 M. Rothenberger and J. Hershauer. A Software Reuse

Measure: Monitoring an Enterprise-Level Model

Driven Development Process. Information and Man-

agement, Vol. 35, p 283-293, 1999.

10 j. Poulin, J. Caruso, and D. Hancock. The Business

Case for Software Reuse. IBM Systems Journal, Vol.

32, No. 4, p. 567-594, 1993.

11

American Institute of Aeronautics and Astronautics

